Module 0340: Express session

Tak Auyeung, Ph.D.

October 24, 2021

Contents

[I_About this module] 1

[2” Session as a concept] 1

[3 Express sessions| 1
B2 Confusion between sandbox and production appd . - . -)

[4 A complete example| 2
T o bl L

1 About this module

= Prerequisites:

= Objectives: This module introduces the concept of sessions, then demonstrates how it is implemented in Express.

2 Session as a concept

HTTP (HyperText Transport Protocol) is a connection-based protocol, but it uses one connection per request. Consecutive
connections from the same tab of the same browser are not related as far as HTTP itself is concerned.

This poses a problem because how can an online merchant know which customer just clicked on "buy now" of an item?
The entire concept of authentication also seem pointless because the authentication and identification of an account only
lasts for one connection, subsequent clicks are logically not connected to the identified user.

One way to create the illustion that subsequent clicks (HTTP requests) are related is to add a parameter to the GET
requests that identifies the continuity. However, this approach has several problems. First, if the continiuity ID is leaked,
someone else can easily hijack an identity. Second, this requires all links to include the parameter which is tedious.

A session is the maintenance of the pretence of continuity between HTTP requests. As such, a session may include various
kinds of information, including but not limited to user identity, shopping carts, and etc.

3 Express sessions

The Express framework include modules to handle sessions in a secure and convenient manner.

3.1 Under the hood

Like most web scripting environments, Express utilizes cookies to identify a session. Let us examine cookies.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022

A cookie has several parts. Of importance to us are the name, URL path, and a value. Typically, upon the response of
the first request to a server, the server specifies a cookie. When the client (browser) receives the response, it creates the
cookie on the client side (managed by the browser).

Once a cookie is created, the client (browser) transmits the cookie and its value every time a request is made to an URL
that matches the URL path of the cookie. This is how continuity is maintained between HTTP requests to all the URL
paths that match the URL path specification of a cookie.

However, a cookie can only contain a small amount of data, and it is not secure to store any sensitive data on the client
side. As a result, the value of a cookie is only used to identify a session, but the actual data associated with a session is
stored on the server side.

To this end, the express-session module is sufficient. However, this module implements the simplest "store", in-memory.
This means that when a server (just the Express script) is restarted, all previous sessions would have been forgotten.

A more robust method that allow sessions to persist server reboots is to maintain data in a database (like MariaDB). This
is implemented by the node module express-mysql-session.

3.2 Confusion between sandbox and production apps
This discussion is not only because of the use of sessions, but the use of databases, in general.

Unless precaution is made, a production app and a sandbox app using the same code base use the same database and the
same tables in the database. This can be an issue because it is unwise to use production data to test code in the sandbox!
Furthermore, it is also common practice to track several datasets (tables and their contents) for testing purposes.

Another limitation is that in most environments, both the production app and the sandbox app need to use the same
database. Given this restriction, one way to keep the production and sandbox separated is to use a prefix for the tables.

Whether non-session tables in the database can be shared or not, session tables cannot be shared. Otherwise, sessions of
the production app and sessions of the sandbox app can cross over.

When the credential object is used to create the "store" of Express sessions, it can use an optional member to determine
the prefix of the tables used to store data related to sessions. We will examine how this can be done in the next section.

4 A complete example

Listing 1: A complete example using Express sessions

"use strict";

module. paths. unshift('/usr/lib/node_modules’)

const fs = require('fs') // module to handle file system

const https = require("https') // module to handle HTTPS as a protocol

const express = require('express’') // module to handle express framework
const asyncHandler = require(' express—async—handler ")
const app = express() // an express instance

// the following line gets the private key needed for SSL

const privateKey = fs.readFileSync('/var/local/ssl/selfsigned.key', "utf8")
// the following line gets the certificate needed for SSL

const certificate = fs.readFileSync('/var/local/ssl/selfsigned.crt’, 'utf8")
// the following line gets the port number Express listens to

const portNumber = fs.readFileSync('.port’, 'utf8").trim()

//

async function delay(ms, value=undefined)
{
return new Promise(
(resolve, reject) =
{
setTimeout (
() = { resolve(value) }, ms
)

023 }

024)

025 }

026

027 async function epRootHandler(req, res)

028 {

029 if ('session’ in req) // just checking, but session should be a part of the
030 // 'req 'uest object

031 {

032 // check whether there are parameters specified, and whether
033 // haveEnough is one of them

034 if ('query’ in req && 'haveEnough' in req.query)

035

036 // if haveEnough is a parameter, is the value 17

037 if (req.query.haveEnough==1)

038

039 // alright , the user has enough already, reset wait time
040 req.session.wait = 0

041 }

042 }

043 // what if there are no query parameters and the wait session
044 // variable is present?

045 else if ('wait’' in req.session)

046 {

047 // wait a little before responding

048 await delay(req.session.wait x 1000)

049 req.session.wait++

050 }

051 // what if there are not query parameters, and there is no wait
052 // session variable?

053 else

054 {

055 // create it! this is the initialization of a session variable, which
056 // indirectly initializes a session

057 req.session.wait = 0

058 }

059)

060 else

061 {

062 // this is bad! should never get here!

063 throw new Error("session is not initialized!")

064 1

065 res.write (‘<!DOCTYPE html><html><head></head><body>")

066 res.write ("<hl>Got you sweating?</h1>")

067 // give the user a warning of the next wait time

068 res.write(‘<p>The next refresh will wait ${req.session.wait} seconds ‘)

069 // the following specifies an anchor with a href to the same page
070 // but specifies a parameter of haveEhough=1

071 res.write('<p>1 have enough!</p>")
072 // the following specifies an anchor with a href to the same page
073 // without any parameters

074 res.write('<p>1 can wait longer.</p>")

075 res.write('</body></html>")

076 res.end ()

077}

078

079 const mdb = require("mysql—await")

080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

const os = require("os") // needed for os.homedir() because ~ does not expand

// the following reads the JSON file that contains the credential and other
// configuration information of the database
let mdbSpecs =
JSON. parse(// decode JSON content
fs.readFileSync(// from the file
os.homedir()+" /. mysqlSecrets.json", // in the home folder
{ encoding: "utf8" }
)
)
// the following specifies schema that is specific to the tables
// used by the database to track sessions
mdbSpecs.schema = { tableName: ‘s_${portNumber} _session "’ }

// the following creates and configures an object to represent
// a connection, but makes no attempt to connect

// this is technically not needed in this script

let mdbConnection = mdb.createConnection(mdbSpecs)

// the following actually communicates with MariaDB to try to
// make a connection, this takes timel!

// this is also not needed in this script
mdbConnection.connect() // for non—session use

// the following brings in the session middleware callback

const session = require('express—session ')

// the following brings in the mysql/MariaDB based session store handler
// and associate it with the session callback

const sessionDbStore = require(' 'express—mysql—session')(session)

// the following associates the session store handler with a specific
// database using the credential stored in mdbSpects

let sessionStore = new sessionDbStore (mdbSpecs)

// the following specifies session handler as one of the middle ware

app . use(
session (

{

key: ‘s${portNumber}Cookie', // use port number to distinguish
// production vs sandbox

secret: ‘${portNumber}", // different secrets, too
store: sessionStore , // database store
resave: false, // do no resave unchanged data
saveUninitialized: false, // uninitialized sessions are not stored
cookie: // session cookie properties
{
maxAge: 60%60x1000), // expire in one hour (in milliseconds)
path: '/', // apply to all end—points
secure: true // same site only

}
}
)
)

// specify end points and handlers for each end point
app.get(’/', asyncHandler(epRootHandler))

// an object needed to create the HTTPS server

137
138
139
140
141

082
083
084
085
086
087
088
089
090

091
092
093

104
105

106
107
108

const credentials = { key: privateKey, cert: certificate }
// create the HTTPS server

let httpsServer = https.createServer(credentials, app)

// start the server

httpsServer.listen (portNumber)

You can |download this script.

This is a fairly complex program. This program makes use of the GET parameters of a HTTP request as well as the
concept of session to maintain continuity between clickes. At the lowest level, the continuity is maintained by the use of
cookies that are stored on the client side.

4.1 Initialization

In addition to the "typical" iniitalization of an Express script, this program also makes use of the database. This initialization
start with reading the file that contains credential to connect to the database.

Listing 2: Reading database access credential

// the following reads the JSON file that contains the credential and other
// configuration information of the database
let mdbSpecs =
JSON. parse(// decode JSON content
fs.readFileSync(// from the file
os.homedir()+" /. mysqlSecrets.json", // in the home folder
{ encoding: "utf8" }
)
)

This step does not actually do anything with the database, it merely reads the content of a file

Listing 3: Specifying the name of the session table

// the following specifies schema that is specific to the tables
// used by the database to track sessions
mdbSpecs.schema = { tableName: ‘s_${portNumber} _session "’ }

Next, based on what is read from the credential file, a new member schema is added. The schema itself can have multiple
members, but the one that we need here is tableName.

Because we are running both the sandbox and production apps on the same server, using the same database, the tables
used to track session must have different names. In this case, the use of the backquote expands the value of portNumer
within the string. This means that if the port number is 41220, then the actual name of the table is s_41220_session.

This works because the sandbox and production apps use different port numbers.

Listing 4: Bringing in the express-session module

// the following brings in the session middleware callback
const session = require('express—session’)

The express-session module is a "middle-ware" in the sense that it gets to read/parse/process a request before an
Express end-point handler is eventually called. However, at this point, the module is simply loaded, but it is in no way
connected to either the database or the Express framework.

To maintain modularity, express-session explicitly leaves out how information tracked by sessions is stored. This is
because different server environment may have different methods to maintain session information.

This brings us to the following code.

Listing 5: Bringing in the express-mysql-session module

// the following brings in the mysql/MariaDB based session store handler
// and associate it with the session callback
const sessionDbStore = require(' express—mysql—session')(session)

appSession.js

109
110
111

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

This code loads the express-mysql-session module, which is specifically developeed to interface with express-session
and utilize a MySQL/MariaDB data to maintain session information.

In case you are wondering, internal to express-mysql-session, callback functions are utilized to handle asynchronous
operations. This has zero impact, whatsoever, to any Express end-point handlers because all database operations related
to the maintenance of sessions occur before and after the execution of Express end-point handlers.

In this step, the module of express-mysql-express is loaded, and it is linked to the express-session module. However,
there is no database operation performed.

Here is the step that initializes database connection for session information maintenance.

Listing 6: Connecting the session module to the database

// the following associates the session store handler with a specific
// database using the credential stored in mdbSpects
let sessionStore = new sessionDbStore (mdbSpecs)

This step utilizes the object mdbSpecs to initialize the connection to the database. If the credential data is incorrect, this
step fails. At this point, the connection to the database is made, and the modules are properly loaded and initialized.
However, the Express framework is completely unaware of the session "middleware". This step creates an object that, in
return, is used in the next step.

Listing 7: Adding session as "middleware" in Express

// the following specifies session handler as one of the middle ware

app . use(
session (

{

key: ‘s${portNumber}Cookie', // use port number to distinguish
// production vs sandbox

secret: ‘${portNumber}", // different secrets, too
store: sessionStore, // database store
resave: false, // do no resave unchanged data
saveUninitialized: false, // uninitialized sessions are not stored
cookie: // session cookie properties
{
maxAge: 60x60%1000, // expire in one hour (in milliseconds)
path: '/', // apply to all end—points
secure: true // same site only

}
)
)

This is where the initialization completes from the perspective of setting up Express to handle sessions. This code is long
because it also specifies many of the parameters related to how session cookies are created. These parameters are captured
by the object (note the use of open brace { and close brace } to specify the object).

The key is used to name cookies uniquely on the client side. Imagine that when your professor is grading, the app of each
student sets a cookie on the professor’'s browser. If the cookie name is not unique, then the browser can end up cross
talking across the apps of different students, leading to massive confusion.

This is why portNumber is expanded and becomes a part of the identifier of the cookie.

The secret, on the other hand, do not need to be unique from the perspectives of making use cookies from different
apps do not cause confusions. The secret is also a key of sorts, but it is the key of encryption. This parameter makes it
difficult for a hacker to spoof cookies to attempt to hijack a session.

The store is where we utilize the rather long initialization process. This is where the session module understand how
session information is maintained. The rest of the parameters are of less importance and therefore not explained in any
further detail (the comments explain in a brief manner).

027
028
077

029
030
031
059
060
061
064

4.2 The end-point handler

The logic of the end-point handler is more complex than our previous sample code. First of all, it illustrates the use of
nested statements where one statement becomes a part of another one. Secondly, it utilizes sessions and query parameters
at the same time to determine what to do.

The only end-point is /, and the call-back (handler) is epRootHander.

Listing 8: The end-point handler, just the shell

async function epRootHandler(req, res)

{
}

An end-point handler actually has more than two parameters, but only two is in use in this example. req is an object
representing the request, and res is an object representing the response.

The main logic to take into consideration of the session-maintained values (wait) and the request parameter (haveEnough)
is from line 29 to 64.

The analysis of code start with the outermost layer because the outermost statement starts first. In this case, the following
is the outermost logic.

Listing 9: The outermost conditional statement

if ('session’' in req) // just checking, but session should be a part of the
// 'req 'uest object

The purpose of this statement is to make sure there is a session before continuing to process. The condition (also known
as a boolean expression) ' session ' in req checkes to see if session is a mmeber of req.

	About this module
	Session as a concept
	Express sessions
	Under the hood
	Confusion between sandbox and production apps

	A complete example
	Initialization
	The end-point handler

