
Module 0335: What is ’await’?

Tak Auyeung, Ph.D.

October 10, 2021

Contents
1 About this module 1

2 An analogy 1
2.1 Taking an order that is slow to prepare . 2

2.1.1 Option 1: synchronous processing . 2
2.1.2 Option 2: asynchronous processing . 2
2.1.3 General idea . 2

3 An non-Express illustration 3
3.1 No delay . 3
3.2 Using functions . 3
3.3 Using setTimeout and call-back functions . 4
3.4 Using Promises . 5
3.5 Using async/await . 6

4 Async/await 6
4.1 Technically, what does await do? . 7
4.2 What happens without "await"? . 7

4.2.1 ’main’ is done first! . 8
4.2.2 There is no predictable ordering of the completion of op1, op2 and op3 8

4.3 Awaiting at the wrong places . 8
4.4 Awaiting each sequential step . 9

1 About this module
• Prerequisites:
• Objectives: This module explains the important concept of ’await’ in the context of Node.

2 An analogy
Let’s think about a restaurant (analoguous to a server environment). In this context, a customer represents a HTTP
client. A waiter is an instance of a HTTP server (your Express+node app). The kitchen represents a “back-end” server.
When there is no customer, the waiter and the kitchen both have nothing to do.
Upon the arrival of a customer, the waiter takes the order (in the form of an HTTP request). You can look at an “end-
point” as a particular item that the restaurant can do for its customers. Obviously, most of the time, most end-points
correspond to dishes.
However, some end-points may correspond to simple information that a waiter can respond without delay, such as inquries
of opening and closing times.
Most requests, however, take time to process. For example, a medium rare steak may take the kitchen a good amount of
time to prepare.

1

2.1 Taking an order that is slow to prepare
Let us look at things from the perspective of the waiter because the waiter represents an Express+node app. A customer
walks in and order a medium rare steak, what is the waiter going to do?

2.1.1 Option 1: synchronous processing

In PHP and many other scripting languages, the waiter takes the order (parses the URL for GET or POST parameters),
and go to the kitchen (a database server, for example), and inform the kitchen that a customer would like to have a
medium rare steak.
And then the waiter simply waits for the kitchen to finish preparing the steak.
20 minutes later, the kitchen finishes preparing the steak, hand the steak to the waiter, and then the waiter in return
serves the customer.
When the waiter was waiting for the kitching to prepare the steak, the waiter cannot do anything else. The waiter cnanot
serve another customer (representing another incoming HTTP request). Even if there are a few other things that the
waiter could have done with the same customer, such as serving water, the waiter cannot do that.

2.1.2 Option 2: asynchronous processing

In Express+node, the waiter sends the steak order to the kitchen on a piece of paper. In addition to the steak order itself,
this piece of paper also includes additional information, such as which customer originates this order, and a method to
notify the waiter when the dish is ready.
As soon as this piece of paper is passed on to the kitchen, the waiter is again available to do other things. For example,
the waiter can now seat another customer (accepting an HTTP request), or continue to serve additional dishes or some
other customers in the restaurant.
When the kitchen is done with the said steak order, it pages the waiter and informs the waiter that the steak is done. As
soon as the waiter is ready, the waiter goes to the kitchen to pick up the finished steak order. Then the waiter can now
resume serving the customer who ordered the steak in the first place.

2.1.3 General idea

The general idea is that Expres+node only has one waiter to serve potentially many customers (each customer corresponds
to an HTTP connection/request). This is how a cost-effective restaurant operates.
On the other hand, languages like PHP rely on allocating one waiter per customer. Such an approach means a restaurant
can hire waiters who do not multitask. However, the overhead of having a large number of waiters is expensive. Further-
more, this approach relies on the ability of a restaurant (the server environment, namely the operating system and the
HTTP server daemon) being able to create a new waiter when a customer walks in.
The Express+node method is far more efficient and portable. In fact, the Express+node method relies little on the server
environment. As such, Express+node apps can potentially run in a wide variety of environments.
In order for this single-waiter method to work, the waiter has to be able to identify steps that may take a long time.
For any steps that may take a long time, the waiter needs the following:

• a way to start the step.
• a way to be notified when the step is completed
• and a way to remember what to continue to do after the step is completed

Through the relatively brief history Express/node, several mechanisms were used to this end:
• In the beginning, the concept of “call-back” functions was used. Suffice to say that this method worked, but it also

causes some major issues with the expression of sequential logic.
• Next, the concept of “Promises” was used to encapsulate the lower-level mechanism of “call-back” functions. The

use of Promises is an object-oriented approach, and it affords a great deal of flexibilities. However, the specification
of sequential steps continue to be quite obscure.

2

• In a later specification of ECMAScript (2017), the concepts of await and async were added as “syntactic eye
candy” of Promises.

It is important to note that call-back functions, at the lowest level, form the foundation of Express+node handling multiple
requests efficiently. Promises are constructs built on top of call-back functions, and then async/await are constructs that
are built on top of Promises.

3 An non-Express illustration
To understand the involved concepts, let us example a simple node script that is not in an Express context.

3.1 No delay
We will start with the following code to simply print “5, 4, 3, 2, 1, Thunderbirds are go!”

Listing 1: Boring without pauses
c o n s o l e . l o g (5)
c o n s o l e . l o g (4)
c o n s o l e . l o g (3)
c o n s o l e . l o g (2)
c o n s o l e . l o g (1)
c o n s o l e . l o g (’Thunderbirds are go!’)

This is no fun! The program quickly prints 6 lines of text and it is done! We want to add the drama of pausing one second
between printing the lines.
In this example, we are intentionally introducing a specific delay. However, in an Express+node script, the intention delay
is replaced by lengthy tasks that cannot be performed by the Express+node script. For example, accessing a database via
queries is a common task that takes a bit to time to complete. For complex apps, using a RESTful API to communicate
with another web server is also an example of a lengthy task.
The mechanism to introduced an artificial delay and to perform a lengthy task is the same, and that is the reason why we
are exploring this example.
Some people may think of using a loop that counts to a very large number as a delay mechanism. There are many problems
with this "busy delay loop" approach. It uses up a lot of processor cycles, and the actual amount of delay depends on
many factors. Suffice to say a busy delay loop is not an acceptable solution.

3.2 Using functions
node offers a delay mechanism setTimeout. In the simplest form, setTimeout use a provided function that requires two
pieces of information:

• a call back function that is called by node, and
• the amount of milliseconds (ms) to set the timer before the said call back function is called

This means that each step that is delayed needs to be a function. Without the use of anonymous functions, now we have
the following code to get ready for the delay mechanism:

Listing 2: Still boring and fragmented
funct ion tb5 ()
{

c o n s o l e . l o g (5)
}

funct ion tb4 ()
{

c o n s o l e . l o g (4)
}

3

funct ion tb3 ()
{

c o n s o l e . l o g (3)
}

funct ion tb2 ()
{

c o n s o l e . l o g (2)
}

funct ion tb1 ()
{

c o n s o l e . l o g (1)
}

funct ion tbGo ()
{

c o n s o l e . l o g (’Thunderbirds are go!’)
}

tb5 ()
tb4 ()
tb3 ()
tb2 ()
tbGo ()

This script does the same thing as the previous one, but it now ready to utilize setTimeout to have a delay. The following
is the code that has a 1 second delay between the printing of each line:

3.3 Using setTimeout and call-back functions

Listing 3: Using call-back to pause
funct ion tb5 ()
{

c o n s o l e . l o g (5)
setTimeout (tb4 , 1000)

}

funct ion tb4 ()
{

c o n s o l e . l o g (4)
setTimeout (tb3 , 1000)

}
funct ion tb3 ()
{

c o n s o l e . l o g (3)
setTimeout (tb2 , 1000)

}

funct ion tb2 ()
{

c o n s o l e . l o g (2)
setTimeout (tb1 , 1000)

}

funct ion tb1 ()
{

4

c o n s o l e . l o g (1)
setTimeout (tbGo , 1000)

}

funct ion tbGo ()
{

c o n s o l e . l o g (’Thunderbirds are go!’)
}

tb5 ()

This program does introduce the delay. However, you can see how the original sequential logic is not broken up into pieces.
The use of Promises makes it possible to encapsulate the delay mechanism itself into a reusable manner.

3.4 Using Promises

Listing 4: Using Promises to pause
funct ion tb5 ()
{

c o n s o l e . l o g (5)
return d e l a y (1000)

}

funct ion tb4 ()
{

c o n s o l e . l o g (4)
return d e l a y (1000)

}

funct ion tb3 ()
{

c o n s o l e . l o g (3)
return d e l a y (1000)

}

funct ion tb2 ()
{

c o n s o l e . l o g (2)
return d e l a y (1000)

}

funct ion tb1 ()
{

c o n s o l e . l o g (1)
return d e l a y (1000)

}

funct ion tbGo ()
{

c o n s o l e . l o g (’Thunderbirds are go!’)
}

funct ion d e l a y (msPer iod)
{

funct ion de l a yP rom i s eHand l e r (r e s o l v e , r e j e c t)

5

{
funct ion t imeoutHand l e r (delayMs)
{

r e s o l v e ()
}
setTimeout (t imeoutHand le r , msPer iod)

}
return new Promise (de l a yP rom i s eHand l e r)

}

tb5 () . then (tb4) . then (tb3) . then (tb2) . then (tb1) . then (tbGo)

(You can download this script here.)
This program uses the Promise concept. While it is more obvious how the functions are "chained", the necessity to break
up the steps into functions makes it difficult to follow the sequential logic.

3.5 Using async/await

Listing 5: Using async/await to pause
funct ion d e l a y (msPer iod)
{

funct ion de l a yP rom i s eHand l e r (r e s o l v e , r e j e c t)
{

funct ion t imeoutHand l e r (delayMs)
{

r e s o l v e ()
}
setTimeout (t imeoutHand le r , msPer iod)

}
return new Promise (de l a yP rom i s eHand l e r)

}

async funct ion main ()
{

c o n s o l e . l o g (5)
awa i t d e l a y (1000)
c o n s o l e . l o g (4)
awa i t d e l a y (1000)
c o n s o l e . l o g (3)
awa i t d e l a y (1000)
c o n s o l e . l o g (2)
awa i t d e l a y (1000)
c o n s o l e . l o g (1)
awa i t d e l a y (1000)
c o n s o l e . l o g ("Thunderbirds are go!")

}

main ()

(You can download this script here.)
This version utilizes the async/await constructs. It is quite obvious how much cleaner this version of code looks.

4 Async/await
async is a reserved word used to qualify a function definition. When a function async qualified, execution of its code can
potentially pause when await is used to qualify a function call.

6

promise.js
async.js

Note that await applies to a value, which potentially can be one that is returned by a call to a function. Technically,
the reserved word await only has meaning when the value being awaited is a Promise object (in which case execution
is paused until the Promise is resolved or rejected). However, awaiting a value that is not a promise simply does not do
anything special, it has no ill effect.
However, forgetting to use await when one is needed can cause some strange behavior. Specifically, you may find some
steps being performed out of order.

4.1 Technically, what does await do?
await instructs node to block (aka pause) execution in an async function until the (singular) awaited Promise object
resolves. The resolution value of the Promise becomes the value of the awaited expression.
In general, a Promise object resolves when the underlying call-back function is called with potentially a resolution value.
As a result, await utlimately waits for a call-back function to be called. Call-back functions are usually called when a
time consuming asychronous (not something to be performed by the node script) operation is completed.

4.2 What happens without "await"?
Let’s say that there 3 operations. op1, op2 and op3 must be performed in this order due to dependency between the
steps. Let us also awsume the 3 operations are all async functions.
The following code performs the operations, but without using await at all.

Listing 6: No await to synchronouse
funct ion d e l a y (msPer iod)
{

funct ion de l a yP rom i s eHand l e r (r e s o l v e , r e j e c t)
{

funct ion t imeoutHand l e r (delayMs)
{

r e s o l v e ()
}
setTimeout (t imeoutHand le r , msPer iod)

}
return new Promise (de l a yP rom i s eHand l e r)

}

async funct ion op1 ()
{

return d e l a y (Math . random ()∗100+300)
}

async funct ion op2 ()
{

return d e l a y (Math . random ()∗100+300)
}

async funct ion op3 ()
{

return d e l a y (Math . random ()∗100+300)
}

async funct ion main ()
{

op1 () . then (() => c o n s o l e . l o g ("op1 is done"))
op2 () . then (() => c o n s o l e . l o g ("op2 is done"))
op3 () . then (() => c o n s o l e . l o g ("op3 is done"))

7

c o n s o l e . l o g ("main is done")
}

main ()

(You can download this script here.)
For now, pay no attention to the weird construct in the definition of the main function. The .then(...) method is
only there so that we can see when an operation is completed.
The definitions of op1, op2 and op3 make use of a random number to determine how much time to delay. The actual
amount of time to delay (for each instance of running this program) is a random number between 300ms and 399ms. This
is done to emulate the unpredicatable nature of how long it may take to complete an asynchronous operation.
Running this program reveals the strange nature of asynchronous operations.

4.2.1 ’main’ is done first!

First of all, main is actually completed first! This is because without await, the calls to op1, op2 and op3 merely informs
node to “when you get a chance, start the operation.” In other words, this main function is analogous to a waiter
dropping off 3 orders of dishes with the kitchen where each dish takes a long time to prepare.
As far as the waiter is concerned, dropping off the orders is quick, and that is all to be done in main!

4.2.2 There is no predictable ordering of the completion of op1, op2 and op3

Try to run this code several times. Except for some unlikely coincidence, you will find that each time you run this program,
the ordering of the completion of op1, op2 and op3 is unpredictable.
This because all 3 operations are started approximately at the same time (differing maybe by hundreds of microseconds).
This program specifically varies the completion time of each operation to emulate the nature of asynchronous calls.

4.3 Awaiting at the wrong places
The following code is one attempt to fix the problem.

Listing 7: Awaits after all operations are started
funct ion d e l a y (msPeriod , name)
{

funct ion de l a yP rom i s eHand l e r (r e s o l v e , r e j e c t)
{

funct ion t imeoutHand l e r (delayMs)
{

r e s o l v e ()
}
c o n s o l e . l o g (‘ ${name} i s s t a r t e d ‘)
setT imeout (t imeoutHand le r , msPer iod)

}
return new Promise (de l a yP rom i s eHand l e r)

}

async funct ion op1 ()
{

return d e l a y (Math . random ()∗100+300 , ’op1’)
}

async funct ion op2 ()
{

return d e l a y (Math . random ()∗100+300 , ’op2’)
}

8

woAwait.js

async funct ion op3 ()
{

return d e l a y (Math . random ()∗100+300 , ’op3’)
}

async funct ion main ()
{

l e t op1Promise = op1 ()
l e t op2Promise = op2 ()
l e t op3Promise = op3 ()

awa i t op1Promise
c o n s o l e . l o g (’op1 is done’)
awa i t op2Promise
c o n s o l e . l o g (’op2 is done’)
awa i t op3Promise
c o n s o l e . l o g (’op3 is done’)
c o n s o l e . l o g ("main is done")

}

main ()

(You can download this script here.)
When this code is run, you will find that all operations are started closely next to each other, and this time, they are
completed in the right order. It appears that the problem is solved, but that is not the case.
Recall that we assumed interdependencies between the operations. This means that op2 should not start until op1 is
completed, and similarly for op2 and op3. Having op2 started before the confirmed completion of op1 is incorrect.
Note that in this version, the delay function is changed slightly so that a name can be printed to identify which operation
has started.
This program illustrates two important points. Just the use of await may not solve the problem of having operations
sequenced. However, it also indicates the placement of await can potentially allow asynchronous operations to occur in
parallel when it makes sense (just not in this program based on our assumptions).

4.4 Awaiting each sequential step
By moving statement a little bit, we end up with the following code.

Listing 8: Awaits between steps to synchronouse operations
funct ion d e l a y (msPeriod , name)
{

funct ion de l a yP rom i s eHand l e r (r e s o l v e , r e j e c t)
{

funct ion t imeoutHand l e r (delayMs)
{

r e s o l v e ()
}
c o n s o l e . l o g (‘ ${name} i s s t a r t e d ‘)
setT imeout (t imeoutHand le r , msPer iod)

}
return new Promise (de l a yP rom i s eHand l e r)

}

async funct ion op1 ()
{

9

postAwait.js

return d e l a y (Math . random ()∗100+300 , ’op1’)
}

async funct ion op2 ()
{

return d e l a y (Math . random ()∗100+300 , ’op2’)
}

async funct ion op3 ()
{

return d e l a y (Math . random ()∗100+300 , ’op3’)
}

async funct ion main ()
{

l e t op1Promise = op1 ()
awa i t op1Promise
c o n s o l e . l o g (’op1 is done’)

l e t op2Promise = op2 ()
awa i t op2Promise
c o n s o l e . l o g (’op2 is done’)

l e t op3Promise = op3 ()
awa i t op3Promise
c o n s o l e . l o g (’op3 is done’)

c o n s o l e . l o g ("main is done")
}

main ()

(You can download this script here.)
Note how the calls to op1, op2 and op3 are after the await of the Promise of the previous operation. This makes sense
because the calling of op1 is what starts the operation associated with op1, but the call actually returns right away to
perform whatever is after the call to op1 in main.
It is the await that blocks further execution until the Promise returned by op1 is resolved. Recall that when a Promise
is resolved, it usually means the underlying call-back function has been resolved (aka concluded).

10

interAwait.js

	About this module
	An analogy
	Taking an order that is slow to prepare
	Option 1: synchronous processing
	Option 2: asynchronous processing
	General idea

	An non-Express illustration
	No delay
	Using functions
	Using setTimeout and call-back functions
	Using Promises
	Using async/await

	Async/await
	Technically, what does await do?
	What happens without "await"?
	'main' is done first!
	There is no predictable ordering of the completion of op1, op2 and op3

	Awaiting at the wrong places
	Awaiting each sequential step

